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The moving-window bis-correlation coe±cients (MW-BiCC) was proposed and employed for the
discriminant analysis of transgenic sugarcane leaves and �-thalassemia with visible and near-
infrared (Vis–NIR) spectroscopy. The well-performed moving-window principal component
analysis linear discriminant analysis (MW-PCA–LDA) was also conducted for comparison. A
total of 306 transgenic (positive) and 150 nontransgenic (negative) leave samples of sugarcane
were collected and divided to calibration, prediction, and validation. The di®use re°ection
spectra were corrected using Savitzky–Golay (SG) smoothing with ¯rst-order derivative (d ¼ 1),
third-degree polynomial (p ¼ 3) and 25 smoothing points (m ¼ 25). The selected waveband was
736–1054 nm with MW-BiCC, and the positive and negative validation recognition rates
(V RECþ, V REC�Þ were 100%, 98.0%, which achieved the same e®ect as MW-PCA–LDA.
Another example, the 93 �-thalassemia (positive) and 148 nonthalassemia (negative) of human
hemolytic samples were collected. The transmission spectra were corrected using SG smoothing
with d ¼ 1, p ¼ 3 andm ¼ 53. Using MW-BiCC, many best wavebands were selected (e.g., 1116–
1146, 1794–1848 and 2284–2342 nm). The V RECþ and V REC� were both 100%, which
achieved the same e®ect as MW-PCA–LDA. Importantly, the BiCC only required calculating
correlation coe±cients between the spectrum of prediction sample and the average spectra of two
types of calibration samples. Thus, BiCC was very simple in algorithm, and expected to obtain
more applications. The results ¯rst con¯rmed the feasibility of distinguishing �-thalassemia and
normal control samples by NIR spectroscopy, and provided a promising simple tool for large
population thalassemia screening.
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leaves; �-thalassemia; moving-window bis-correlation coe±cients; moving-window principal
component analysis linear discriminant analysis.

1. Introduction

Near-infrared (NIR) spectroscopy as a simple and
quick tool has been e®ectively utilized in various
¯elds for quantitative and qualitative analysis,
such as agriculture,1–6 food,7–9 environment,10,11

biomedicine,12–16 petroleum industry,17 and so on.18

Spectral discriminant analysis is a methodology
that uses computer pattern recognition to identify
and classify samples based on the collected spectral
data. Instead of the quantitative analysis for some
components in the samples, its bases are the spec-
tral overall features that are the spectral similarity
of the samples of the same types and the spectral
di®erences between samples of the di®erent types.
Pattern recognition technology based on NIR
spectral information is presently an important re-
search area,18 such as distinction of di®erent melon
genotypes,2 identi¯cation of transgenic sugarcane
leaves,9 and classi¯cation of multiple online petro-
leum industrial products.17

Principal component analysis linear discriminant
analysis (PCA–LDA) is the commonly well-per-
formed method for spectral discriminant analy-
sis.2,9,17,18 The extraction of feature information and
dimension reduction were performed based on a
spectral data matrix that corresponds to variables
(e.g., wavelengths) and samples. In general, the
original data matrix for the entire scan range is
directly subjected to PCA–LDA. However, this
process has its drawbacks. Substances have their
own speci¯c molecular absorbance bands and spec-
tral data that involve instrumental noise distur-
bance bands; hence, the raw data matrix usually
contains considerable interference noise. Inappro-
priate wavelength selection will certainly a®ect the
quality of extracted feature information. In sum-
mary, wavelength selection is required in the sense
of mathematics, physics and chemistry.

The moving-window waveband screening is a
well-performed method for wavelength selection
that uses each waveband as a window, and wave-
length optimization is achieved by varying the
size and position of the window. In the spectral
quantitative analysis, numerous experimental
results4,8,11,12,19 indicate that the moving-window

waveband screening can extract information e®ec-
tively, eliminate noise disturbances, and improve
spectral predictive capability signi¯cantly. For
spectral discriminant analysis, the moving-window
waveband screening was integrated with PCA–
LDA, called moving-window PCA–LDA (MW-
PCA–LDA), and was applied to the nondestructive
discriminant analysis of transgenic sugarcane
leaves with visible and near-infrared (Vis–NIR)
spectroscopy.9

The bases of discriminant analysis are the spec-
tral similarity of the samples of the same types and
the spectral di®erences between samples of the dif-
ferent types. If the spectral waveband selection is
appropriate, the spectral correlation coe±cient can
also re°ect similarities and di®erences. Thus, a
simpler spectral discriminant analysis method
named moving-window bis-correlation coe±cients
(MW-BiCC) was proposed in this study.

Along with the development of agricultural bio-
technology, transgenic sugarcane breeding receives
more and more attention. In transgenic sugarcane
breeding, the traditional molecular biology detec-
tion technologies (i.e., enzyme-linked immunosor-
bent assay (ELISA)) are complicated and cannot
meet the needs of large-scale production. It is sig-
ni¯cant to develop the nondestructive discriminant
method of transgenic sugarcane leaves with Vis–
NIR spectroscopy.

Another example, thalassemia is a hemolytic ge-
netic disease, and it a®ects individuals from many
parts of the world, including southern China, where
it has a high prevalence and incidence and has caused
serious health damage.20 In China, the rates of gene
carriers are as high as 24.13% and 11.07% in the
population of Guangxi and Guangdong provinces,
respectively.21,22 Among them, �-thalassemia is a
common type. Up to now, the disease cannot be
cured, except through hematopoietic stem cell
transplantation. The most fundamental prevention
measures include premarital and prenatal thalasse-
mia screening in a large population.

Hematologic phenotypic analysis is a ¯rst-line
screening method for thalassemia diagnosis, which
includes full blood cell (FBC) analysis and
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hemoglobin component analysis (HCA). Among
them, mean corpuscular hemoglobin (MCH) and
mean corpuscular volume (MCV) are preliminary
screening indicators for thalassemia, which are
measured by FBC. The indicator hemoglobin
A2(HbA2Þ is used to further distinguish �-thalas-
semia, which are measured by HCA. The pheno-
type-positive subjects for �-thalassemia are those
with MCH � 27:0 pg (or MCV � 80:0 fL) and
HbA2 > 3:5%.20–22 These procedures are relatively
complicated because they require di®erent chemical
reagents and di®erent measuring instruments. It
is not suitable for thalassemia screening in large
population. To the best of our knowledge, the
use of NIR spectroscopy to directly discriminate
�-thalassemia has not been reported yet. It is very
signi¯cant to develop the rapid and simple dis-
criminant method of large population thalassemia
screening with NIR spectroscopy.

In this study, the Vis–NIR spectroscopic dis-
criminant analysis of transgenic sugarcane leaves
and �-thalassemia were taken as the examples to
evaluate the performance of the proposed MW-
BiCC, and the MW-PCA–LDA method was also
performed for comparison. On the other hand,
Savitzky–Golay (SG) smoothing,4,9,13,23 which is an
e±cient spectral preprocessing method with a wide
scope of application and a variety of di®erent
smoothing modes, was used ¯rst for the pretreat-
ment of di®use re°ectance spectral data.

2. Materials and Methods

2.1. Samples and reference methods

2.1.1. Sugarcane leaf samples

The sugarcane strains of Xintaitang (ROC), which
are the widely cultivated varieties of sugarcane in
southern China, were adopted. The leaves of the
¯eld-planting sugarcane strains in the elongation
stage were collected as experimental samples. Some
of the sugarcane receptors contained both Bacillus
thuringiensis and Bialaphos resistance genes, and
the others were nontransgenic sugarcane strains. In
chronological order, the samples were divided into
two groups. The ¯rst group (300 samples) collected
on the ¯rst day was used for modeling, whereas the
second group (156 samples) collected on the second
day was used for validation. The second group ex-
cluded in modeling was used to validate and achieve
an objective evaluation.

One leaf was randomly collected from each sug-
arcane strain. The collected samples were washed
and stored at room temperature for 2 h to dry nat-
urally and equilibrate to the experimental environ-
ment before collection of the Vis–NIR di®use
re°ectance spectra. Each leaf was cut into several
neat little leaves. The lea°ets were °attened and
overlaid into a round sample cup (face up), so that
the spot of light could be covered. They were used
for the measurement of di®use re°ectance spectra at
room temperature.

Enzyme-linked immunosorbent assay (ELISA)
was applied to check the genes and expression for
each sample. The instruments were an ELISA kit
BT-Cry1Ab/1Ac (AGDIA, USA) and a microplate
reader iMark (Bio-rad, USA). After the above
measurement, the ¯rst group included 200 trans-
genic (positive) and 100 nontransgenic (negative)
samples of sugarcane leaves; while the second group
included 106 transgenic and 50 nontransgenic
samples of sugarcane leaves.

2.1.2. Human hemolytic solution samples

A total of 241 human peripheral blood samples were
collected from the same hospital and placed in 0.2%
ethylenediaminetetraacetic acid-containing tubes.
As the blood samples were collected and used in this
study, the informed consent of all individual parti-
cipants was obtained. Experiments were performed
in compliance with the relevant laws and institu-
tional guidelines and approved by local medical in-
stitution, which obtained the informed consent from
all subjects. The �-thalassemia indicators (MCH,
MCV and HbA2Þ of these samples were measured
via two existing clinical methods from the same
hospital. In which, the MCH, and MCV values were
measured with a BC-3000Plus Blood Cell Analyzer
(Shenzhen Mairui, China) using FBC count meth-
od, and the HbA2 values were measured with a
VARIANT

TM
Hemoglobin Testing System (Bio-

Rad Laboratories, USA) using high-pressure liquid
chromatography analysis method. According to the
cuto® values (MCH � 27:0 pg or MCV � 80:0 fL
and HbA2 > 3:5%) for �-thalassemia, the 241
samples are identi¯ed as 93 �-thalassemia (positive)
and 148 nonthalassemia (negative).

Thalassemia is a hemoglobin disease, which is
closely related to the erythrocyte. Erythrocyte is the
tangible part of the blood. When the light pene-
trates the erythrocytes, scattering occurs, a®ecting
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the accuracy of spectral analysis. If the distilled
water is added to the blood, due to osmotic pres-
sure, the blood cell membrane will rupture and be-
come hemolysate solution sample. This process
is called hemolysis of distilled water. Since the
homogeneity of the hemolytic solution sample is
signi¯cantly better than that of the whole blood
sample, the interference of the light scattering is
reduced. In the previous study,14 the quantitative
analysis for thalassemia indicators (MCH and
MCV) has achieved very good e®ect when the
2� dilute hemolytic solution samples were adopted
for NIR measurement. The 2� dilute hemolytic
solution samples were also used in this study. To do
this, one volume of peripheral blood sample was
diluted with an equal volume of distilled water
to rupture the erythrocytes, and the hemolysate
samples were obtained.

2.2. Spectral experiments

The spectra were collected by the XDS Rapid
Content

TM
grating spectrometer (FOSS, Denmark).

The scanning range was a part of visible and whole
NIR regions of 400–2498 nm equipped with a silicon
detector (400–1100 nm) and a plumbous sul¯de
detector (1100–2498 nm), respectively. The spectra
were recorded with 4-nm spectral resolution with a
2-nm wavelength interval, and a total of 15 scans
were averaged for every spectrum to overcome the
inhomogeneity.

The spectrometer was equipped with a di®use
re°ection accessory for the measurement of sugar-
cane leaf samples, and a transmission accessory with
a 2-mm cuvette for the measurement of human
hemolytic solution samples. In order to achieve sta-
bility, each sample was measured three times and the
mean spectrum of the measurements was used for
modeling and validation. The spectra were measured
at 25� 1�C and 46� 1% relative humidity.

2.3. Calibration, prediction, and
validation processes

The Kennard–Stone (KS) algorithm24,25 is an ef-
fective partition method for sample experiment.
A \distance" between every two samples was ¯rst
de¯ned (e.g., Euclidean distance or Mahalanobis
distance). A small distance value indicates a high
similarity between two samples, and vice versa
indicates low similarity. Based on the de¯ned

distance, the KS algorithm e®ectively selects an
appropriate subset of samples which can uniformly
and su±ciently represent the entire sample space.

2.3.1. Sugarcane leaf samples

The ¯rst group of samples was used for modeling.
Using the KS algorithm, the separate divisions for
calibration and prediction sets were performed for
positive and negative groups to achieve uniformity
and representativeness. The modeling samples (200
positive and 100 negative) were divided into cali-
bration (100 positive and 50 negative) and predic-
tion (100 positive and 50 negative) sets. Parameter
optimization was performed according to the pre-
diction recognition rate. The posterior group of
samples (106 positive and 50 negative) excluded in
the modeling was used for validation.

2.3.2. Human hemolytic solution samples

First, 96 samples were randomly selected as the
validation set (58 negative and 38 positive). Then,
the remaining 145 samples were used as modeling
set (90 negative and 55 positive). Using the KS al-
gorithm, the modeling samples were divided into
calibration (45 negative and 28 positive) and pre-
diction (45 negative and 27 positive) sets.

2.4. Spectral discriminant analysis

methods with moving-window
waveband screening

2.4.1. Proposed bis-correlation coe±cients

method

The BiCC method in any ¯xed waveband is intro-
duced speci¯cally as follows:

First, the spectral waveband was assumed to
contain N consecutive wavelengths. The average
spectra of negative and positive calibration samples
were calculated and denoted as ðA�

1 ;A
�
2 ; . . . ;A

�
NÞ

and ðAþ
1 ;A

þ
2 ; . . . ;A

þ
NÞ, respectively, which could be

used as the characteristic spectra of negative and
positive calibration samples.

Second, for the kth prediction sample, the spec-
trum was denoted as ðA1;k;A2;k; . . . ;AN;kÞ, two
correlation coe±cients between the spectrum and
the average spectra of two types of calibration
samples were further calculated and expressed as
R�

k and Rþ
k , as shown in formulas (1) and (2), where

AAve;k, A�
Ave and Aþ

Ave were the mean values of
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ðA1;k;A2;k; . . . ;AN ;kÞ, ðA�
1 ;A

�
2 ; . . . ;A

�
NÞ and ðAþ

1 ;
Aþ

2 ; . . . ;A
þ
NÞ, respectively:

R�
k ¼

PN
i¼1ðA�

i �A�
AveÞðAi;k �AAve;kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðA�
i �A�

AveÞ2
PN

i¼1 ðAi;k �AAve;kÞ2
q ;

ð1Þ

Rþ
k ¼

PN
i¼1ðAþ

i �Aþ
AveÞðAi;k �AAve;kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðAþ
i �Aþ

AveÞ2
PN

i¼1 ðAi;k �AAve;kÞ2
q :

ð2Þ
The di®erent value between the BiCC was fur-

ther calculated and denoted as �Rk, as shown in
formula (3), if �Rk > 0, then the kth prediction
sample was determined as a negative sample; if
�Rk � 0, then the kth prediction sample was
determined as a positive sample.

�Rk ¼ R�
k � Rþ

k : ð3Þ
Finally, referring to the known types of the pre-

diction samples, the prediction recognition rate was
calculated easily and denoted as P REC.

2.4.2. PCA–LDA method

PCA–LDA is a commonly well-performed method
for spectral discriminant analysis.1,2,9,17,18

First, the PCA was performed based on the ab-
sorbance matrix of the calibration set, and then the
extracted principal components are sorted by vari-
ance from large to small. The preceding several
principal components based on the cumulative
contribution rate mainly re°ect the information of
the original data, while the following principal
components re°ect the noise disturbances. The
purpose of this study is the spectral discrimination
analysis of the samples. In order to determine the
surface classi¯cation and facilitate visualization, the
three-dimensional PCA model with the ¯rst three
principal components was adopted in the next LDA
procedure. The detailed procedure can be found in
the previous studies.1,18

2.4.3. MW-BiCC and MW-PCA–LDA

methods

The BiCC and PCA–LDA combined with moving-
window waveband screening were called MW-BiCC
and MW-PCA–LDA, respectively.

Considering the position and length of the wave-
bands, the search parameters of moving-window

waveband screening were set as follows: (1) initial
wavelength (IÞ and (2) number of wavelengths (NÞ.
For the sugarcane leaves, dataset adopted the whole
scanning region (400–2498 nm), I was set to
I 2 f400; 402; . . . ; 2498g. To lessen the workload
and ensure representativeness, N was set as N 2
f3; 4; . . . ; 100g [N 2 f3;4; . . . ;100g [ f100; 110; . . . ;
200g [ f220;240; . . . ;860g [ f1050g: For the human
hemolytic solution, dataset adopted the whole NIR
region (780–2498 nm), I was set to I 2 f780;782; . . . ;
2498g, and N was set as N 2 f3; 4; . . . ; 100g[
f100; 110; . . . ; 200g [ f220;240; . . . ;860g. For each
waveband that corresponds to a combination of
parameters (I,NÞ, the BiCC and PCA–LDAmodels
were established, and the optimal parameters can be
preferred according to the maximum P REC.

Furthermore, the validation samples excluded in
the modeling procedure were applied to validate the
selected models screening by MW-BiCC and MW-
PCA–LDA. According to the genuine genotypes
type of each validation samples and the number of
correctly recognized validation samples, the recog-
nition rate can be calculated easily, and was deno-
ted as V REC. The validation recognition rates of
positive and negative samples were calculated and
denoted as V RECþ and V REC�, respectively.

The computer algorithms for the two methods
were designed using MATLAB V7.6.

3. Results and Discussion

The Vis–NIR spectra of 306 positive and 150 neg-
ative samples of sugarcane leaves in the whole
scanning region (400–2498 nm) are shown in Fig. 1.
The NIR spectra of 93 positive and 148 negative
samples of human hemolytic solution in the whole
NIR region (780–2498 nm) are shown in Fig. 2. As
shown in Figs. 1 and 2, the spectra of negative and
positive samples were overlapping, thereby result-
ing in no obvious spectral di®erences for direct
discriminant analysis. Figures 1 and 2 show that the
baseline deviations (drifts) of the spectra of di®erent
samples are serious.

3.1. Full spectral models

For the sugarcane leaves' dataset, the BiCC and
PCA–LDA models with the whole scanning region
(400–2498 nm) were established. The corresponding
modeling e®ects are summarized in Table 1. The
P REC values of the two methods were 80.0% and
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75.3%, respectively. The results show that the
spectral identi¯cation was unsatisfactory when
using the spectroscopy data without pretreatment.

For the human hemolytic solution dataset, the
BiCC and PCA–LDA models with the whole NIR

region (780–2498 nm) were also established. The
corresponding modeling e®ects are summarized in
Table 2. The P REC values of the two methods
were 90.3% and 88.9%.

In the following, the spectral data were pre-
processed, and then the modeling was performed.

3.2. Full spectral models with SG
smoothing

3.2.1. Sugarcane leaves' dataset

The parameters of SG smoothing include order
of derivatives (dÞ, degree of polynomial (pÞ and
number of smoothing points (m, odd). In the pre-
vious study,9 the SG smoothing mode with ¯rst-
order derivative, third-degree polynomial and 25
smoothing points (d ¼ 1, p ¼ 3 and m ¼ 25) was
used and achieved a better prediction e®ect of
PCA–LDA model for the sugarcane leaf samples.

Table 1. Modeling e®ects of the BiCC and PCA–LDA models
with the whole scanning region for the sugarcane leaf samples.

Method Waveband (nm) N P REC

Without pretreatment
BiCC 400–2498 1050 80.0%
PCA–LDA 75.3%

With SG smoothing
BiCC 400–2498 1050 92.7%
PCA–LDA 92.0%

Notes: N : number of wavelengths; P REC: prediction recog-
nition rate; BiCC: bis-correlation coe±cients; PCA–LDA:
principal component analysis linear discriminant analysis.
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Fig. 1. Vis–NIR spectra of sugarcane leaf samples for (a) 306 positive and (b) 150 negative.
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Fig. 2. Vis–NIR spectra of human hemolytic solution samples for (a) 93 positive and (b) 148 negative.
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In the present study, the SG mode (d ¼ 1, p ¼ 3 and
m ¼ 25) was still applied to BiCC model.

The corresponding SG derivative spectra are
shown in Fig. 3. The baseline deviations (drifts) of

the spectra of di®erent samples are signi¯cantly
reduced. In addition, as shown in Figs. 3(c)
and 3(d), some di®erence in positive and negative
samples was observed in the waveband of
736–1054 nm. The BiCC and PCA–LDA models
with SG smoothing pretreatment were further
established. The corresponding modeling e®ects are
also summarized in Table 1. For the BiCC and
PCA–LDA models with SG smoothing pretreat-
ment, the predictive discrimination rates (P REC)
were improved to 92.7% and 92.0%, respectively.
These results show that the SG smoothing can re-
duce spectral noise and improve spectral recognition
ability. But, the full spectral models adopted 1050
wavelengths with high parameter complexity.

3.2.2. Human hemolytic solutions' dataset

In the previous study,13 the SG smoothing mode
with ¯rst-order derivative, third-degree polynomial

Table 2. Modeling e®ects of the BiCC and
PCA–LDA models with the whole NIR region for
the human hemolytic solution samples.

Method Waveband (nm) N P REC

Without pretreatment
BiCC 780–2498 860 90.3%
PCA–LDA 88.9%

With SG smoothing
BiCC 780–2498 860 94.4%
PCA–LDA 93.1%

Notes: N : number of wavelengths; P REC: pre-
diction recognition rate; BiCC: bis-correlation
coe±cients; PCA–LDA: principal component
analysis linear discriminant analysis.
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Fig. 3. SG derivative spectra of sugarcane leaves samples for (a) 306 positive (400–2498 nm), (b) 150 negative (400–2498 nm),
(c) 306 positive (736–1054 nm) and (d) 150 negative (736–1054 nm).
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and 53 smoothing points (d ¼ 1, p ¼ 3 and m ¼ 53)
was used and achieved a better prediction e®ect of
PLS model for the human serum samples. In the
present study, the SG mode (d ¼ 1, p ¼ 3 and
m ¼ 53) was tried to BiCC model.

The corresponding SG derivative spectra are
shown in Fig. 4. The baseline deviations (drifts) of
the spectra of di®erent samples are signi¯cantly
reduced. In addition, as shown in Figs. 4(c) and
4(d), some di®erence in positive and negative
samples was observed in the waveband of 2284–
2342 nm. The BiCC and PCA–LDA models with
SG smoothing pretreatment were also further
established. The corresponding modeling e®ects are
also summarized in Table 2. For the BiCC model
with SG smoothing, the P REC was improved to
94.4%. For the PCA–LDA model with SG
smoothing, the P REC was improved to 93.1%.

In order to extract e±cient information, and
eliminate noise, the waveband optimizations were
further carried out by MW-BiCC and MW-PCA–
LDA methods after the SG smoothing.

3.3. MW-BiCC models

3.3.1. Sugarcane leaves' dataset

The average spectra of negative and positive sam-
ples are shown in Fig. 5. Notable di®erences were
observed between the two spectra, particularly
around the three peaks at 678, 1450, and 1928 nm
and four valleys at 552, 800, 1666, and 2216 nm.
The absorption of positive samples around the val-
ley at 800 nm was remarkably lower than that of the
negative samples; whereas, at the three peaks and
other three valleys, the positive samples absorption
was remarkably higher than that of the negative
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Fig. 4. SG derivative spectra of human hemolytic solution samples for (a) 93 positive (780–2498 nm), (b) 148 negative (780–
2498 nm), (c) 93 positive (2284–2342 nm) and (d) 148 negative (2284–2342 nm).

L. Yao et al.

1850005-8

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
8.

11
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

U
A

Z
H

O
N

G
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 o

n 
09

/1
3/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



samples. These di®erences indicate the feasibility of
identifying transgenic and nontransgenic samples.

Using the MW-BiCC method based on the SG
derivative spectra, the selected optimal I and N
were 736 nm and 160, respectively. The corre-
sponding waveband was 736–1054 nm, which cov-
ered part of the Vis–NIR combined region. As
shown in Table 3, the corresponding prediction
recognition rate (P REC) achieved 98.0%, which
was evidently higher than one of the BiCC models
(see Table 1). Moreover, a minority of wavelengths
(i.e., N ¼ 160) was used in the selected model,
so the scope of the wavelength was signi¯cantly
narrowed. The selected waveband (736–1054 nm)
contained the spectral valley at 800 nm, and the
absorption of positive samples was remarkably
lower than that of the negative samples in the
selected waveband (seen in Fig. 5). This region was
related to the fourth overtone of C–H (CH and
CH2Þ and the third overtone of O–H (H2O and
Ar–OH).26 In fact, transgenic sugarcane leaves
contain BT and BR proteins expressed byBacillus
thuringiensis and Bialaphos resistance genes.27,28

These two proteins do not exist in nontransgenic
sugarcane leaves. Therefore, there are some di®er-
ences in the molecular structure of the positive and
negative transgenic sugarcane leaf samples. The
protein molecules contain a large amount of hy-
drogen-containing groups, which have absorption
information in the NIR region.

3.3.2. Human hemolytic solutions' dataset

The average spectra of negative and positive sam-
ples are shown in Fig. 6. The di®erences were ob-
served between the two spectra, particularly around
the two peaks at 1450 nm and 1950 nm and three
valleys at 1126, 1666, and 2216 nm. The positive
samples absorption was remarkably higher than
that of the negative samples. These di®erences in-
dicate the feasibility of identifying positive and
negative samples. In fact, the �-thalassemia is
caused by partial or total mutations that reduce or
abolish the synthesis of �-globin chains of the he-
moglobin molecule, which will result in hemolytic
anemia.20–22 And the blood molecules in the non-
thalassemia sample do not have these changes.
Therefore, there are some di®erences in the molec-
ular structure of the positive and negative samples.

Using the MW-BiCC method based on the SG
derivative spectra, a lot of wavebands were selected
and their P REC achieved 100%. The saturate ab-
sorption regions appear around the two peaks at
1450 nm and 1950 nm (seen in Fig. 6), implying a
strong absorption of water molecules and high noise
levels, which need to be avoided. Around the three
valleys at 1126, 1666 and 2216 nm, the selected
wavebands whose P REC achieved 100% and con-
tained the least wavelengths were 1116–1146 nm
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Fig. 5. Average spectra of positive and negative samples of
sugarcane leaves.

Table 3. Modeling e®ects of the selected MW-BiCC and MW-
PCA–LDA models with SG smoothing for the sugarcane leaf
samples.

Method Waveband (nm) N P REC

MW-BiCC 736–1054 160 98.0%
MW-PCA–LDA 756–1094 170 97.3%

Notes: N : number of wavelengths; P REC: prediction recog-
nition rate; MW-BiCC: moving-window bis-correlation
coe±cients; MW-PCA–LDA: moving-window principal com-
ponent analysis linear discriminant analysis.

700 1000 1300 1600 1900 2200 2500
0

1

2

3

4

5

1950

1450

2216

1666

1126

Average spectrum (Negative)
Average spectrum (Positive)

Ab
so

rb
an

ce
 (a

rb
itr

ar
y 

un
its

)

Wavelength (nm)

Fig. 6. Average spectra of positive and negative samples of
human hemolytic solutions.
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(N ¼ 16), 1794–1848 nm (N ¼ 28) and 2284–
2342 nm (N ¼ 30), respectively. They are located in
the third overtone, the ¯rst overtone and the com-
bination regions, respectively. These models have
the best predictive e®ect and the lowest parameter
complexity.

3.4. MW-PCA–LDA models

3.4.1. Sugarcane leaves' dataset

By using the MW-PCA–LDA method based on the
SG derivative spectra, the selected optimal I and N
values were 756 nm and 170, respectively. The cor-
responding waveband was 756–1094 nm, which
covered part of the Vis–NIR region.

As shown in Table 3, the corresponding predic-
tion recognition rate (P REC) achieved 97.3% with
N ¼ 170. Therefore, the selected MW-PCA–LDA
model was signi¯cantly better than the PCA–LDA
model (see Table 1) in two aspects of prediction
performance and parameter complexity.

The position of the selected wavebands (756–
1094 nm) was also in the spectral valley at 800 nm,
and the two selected wavebands screening by MW-
BiCC and MW-PCA–LDA methods were consistent
similarly. The MW-BiCC achieved slightly better
modeling e®ect (P REC), but adopted less wave-
lengths (N ¼ 160).

3.4.2. Human hemolytic solutions' dataset

Using the MW-PCA–LDA method based on the SG
derivative spectra, a lot of wavebands were also
selected and their P REC achieved 100%. Around
the three valleys at 1126, 1666, and 2216 nm, the
selected wavebands whose P REC achieved 100%
and contained the least wavelengths were 1088–
1266 nm (N ¼ 90), 1634–1852 nm (N ¼ 110) and

2180–2318 nm (N ¼ 70), respectively. However,
these wavebands almost covered the corresponding
wavebands obtained by the MW-BiCC and con-
tained more wavelengths.

3.5. Validation

3.5.1. Sugarcane leaves' dataset

The validation samples (106 positive and 50 nega-
tive samples) excluded in the modeling procedure
were used for validating the selected MW-BiCC
(736–1054 nm) and MW-PCA–LDA (756–1094 nm)
models with SG derivative spectra. Table 4 sum-
marizes the obtained values of V REC, V RECþ,
and V REC�. As shown in Fig. 7(a), the validation
samples' plot on the two-dimensional (2D) principal
component space was clearly classi¯ed into two
groups using the di®erent values (�RÞ of BiCC.
Moreover, as shown in Fig. 8(a), the validation
samples' plot on the three-dimensional (3D) prin-
cipal component space was clearly classi¯ed into
two groups. Only one negative sample was mis-
judged as a positive sample (false positive).

3.5.2. Human hemoytic solutions' dataset

The validation samples (38 positive and 58 negative
samples) excluded in the modeling procedure
were used for validating the selected MW-BiCC
(1116–1146, 1794–1848 and 2284–2342 nm) and
MW-PCA–LDA (1088–1266, 1634–1852 and
2180–2318 nm) models with SG derivative spectra.
Their V REC, V RECþ, and V REC� values were
all 100%.

For simplicity, the BiCC model with 1116–
1146 nm and PCA–LDA model with 1088–1266 nm
were taken as examples. As shown in Figs. 7(b)
and 8(b), the validation samples' plot on the 2D and

Table 4. Validation e®ects of the selected MW-BiCC and MW-PCA–LDA
models for the sugarcane leaf samples.

Method Waveband (nm) N V REC V RECþ V REC�

MW-BiCC 736–1054 160 99.4% 100% 98.0%
MW-PCA–LDA 756–1094 170 99.4% 100% 98.0%

Notes: N : number of wavelengths; P REC: prediction recognition rate;
V REC: validation recognition rate; V RECþ: validation recognition rate of
positive samples; V REC�: validation recognition rate of negative samples;
MW-BiCC: moving-window bis-correlation coe±cients; MW-PCA–LDA:
moving-window principal component analysis linear discriminant analysis.
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the 3D diagrams were clearly classi¯ed into two
groups, respectively.

The results indicated that the moving-window
waveband screening applied to BiCC and PCA–
LDA models could e®ectively extract spectral
information, eliminate noise disturbances, and
signi¯cantly improve spectral pattern recognition
capability. Furthermore, the number of used
wavelengths could be largely reduced.

The results also showed that the selected MW-
BiCC model achieved the same validation e®ect
(V REC, V RECþ, V REC�Þ as the selected MW-
PCA–LDA model. But, the PCA–LDA method
comprised a number of procedures, such as calcu-
lating the loading and score matrices, determining
the expression of the cuto® planar or line, and
selecting the optimal principal component combi-
nation. For the BiCC, the average spectra of the

negative and positive calibration samples were cal-
culated ¯rst. Then, the correlation coe±cients be-
tween the spectrum of the prediction sample and
the two average spectra were calculated; the type of
the sample could be determined according to the
size of the correlation coe±cients. Therefore, the
BiCC was very simple in terms of algorithm.

On the other hand, the experimental results ¯rst
con¯rmed the feasibility of distinguishing �-thalas-
semia and normal control samples by NIR spec-
troscopy of human hemolytic solutions.

4. Conclusion

A novel spectral discriminant analysis method
(i.e., MW-BiCC) was proposed based on Vis–NIR
spectroscopy. The di®erent types of samples
(e.g., transgenic and nontransgenic sugarcane leaves,

(a) (b)

Fig. 8. 3D diagrams of validation samples classi¯ed as positive and negative with MW-PCA–LDA for (a) sugarcane leaves and (b)
human hemolytic solutions.
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Fig. 7. 2D diagrams of validation samples classi¯ed as positive and negative with MW-BiCC for (a) sugarcane leaves and (b)
human hemolytic solutions.
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human hemolytic solutions of �-thalassemia and
normal control) have di®erent molecular structures,
so that their spectral characteristics are also di®er-
ent in the speci¯c waveband. The BiCC method
used the average spectrum to de¯ne the spectral
characteristics and the correlation coe±cient to
evaluate the di®erence. Through the waveband se-
lection, the MW-BiCC method highlighted the dif-
ferences between spectral characteristics of di®erent
types of samples (e.g., Figs. 3 and 4), and achieved
accurate spectral discriminant analysis.

The experimental results of the spectral dis-
criminant analysis of transgenic sugarcane leaves
and �-thalassemia indicated that the MW-BiCC
was an e±cient method. In the modeling process,
the MW-BiCC achieved slightly better prediction
e®ect (P REC) than the MW-PCA–LDA; whereas
in the validation process, the two methods had
the same prediction e®ect (V REC, V RECþ,
V REC�Þ. Importantly, the BiCC required only
calculating the correlation coe±cients between the
spectrum of prediction sample and average spectra
of the two types of the calibration samples. Thus,
the BiCC was very simple in terms of algorithm,
and expected to obtain more applications.

It is worth mentioning that the experimental
results ¯rst con¯rmed the feasibility of distinguish-
ing �-thalassemia and normal control samples by
NIR spectroscopy of human hemolytic solutions.
Compared with the conventional methods, the NIR
method is rapid and simple; it is a promising tool
for �-thalassemia screening in large population
prevention and control program.

The selected waveband provided valuable refer-
ence in designing small and dedicated spectrometer
for the large-scale application of NIR method. The
BiCC can be combined with other wavelength
selection methods for more applications.
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